Fixed Point Algorithm Based on Quasi-Newton Method for Convex Minimization Problem with Application to Image Deblurring
نویسنده
چکیده
Solving an optimization problem whose objective function is the sum of two convex functions has received considerable interests in the context of image processing recently. In particular, we are interested in the scenario when a non-differentiable convex function such as the total variation (TV) norm is included in the objective function due to many variational models established in image processing have this nature. In this paper, we propose a fast fixed point algorithm based on the quasi-Newton method for solving this class of problem, and apply it in the field of TV-based image deblurring. The novel method is derived from the idea of the quasi-Newton method, and the fixed-point algorithms based on the proximity operator, which were widely investigated very recently. Utilizing the non-expansion property of the proximity operator we further investigate the global convergence of the proposed algorithm. Numerical experiments on image deblurring problem with additive or multiplicative noise are presented to demonstrate that the proposed algorithm is superior to the recently developed fixed-point algorithm in the computational efficiency.
منابع مشابه
A quasi-Newton projection method for nonnegatively constrained image deblurring
In this paper we present a quasi-Newton projection method for image deblurring. The mathematical problem is a constrained minimization problem, where the objective function is a regularization function and the constraint is the positivity of the solution. The regularization function is a sum of the Kullback-Leibler divergence, used to minimize the error in the presence of Poisson noise, and of ...
متن کاملA Quasi-Newton Penalty Barrier Method for Convex Minimization Problems
We describe an infeasible interior point algorithm for convex minimization problems. The method uses quasi-Newton techniques for approximating the second derivatives and providing superlinear convergence. We propose a new feasibility control of the iterates by introducing shift variables and by penalizing them in the barrier problem. We prove global convergence under standard conditions on the ...
متن کاملMinimizing Compositions of Functions Using Proximity Algorithms with Application in Image Deblurring
We consider minimization of functions that are compositions of functions having closed-form proximity operators with linear transforms. A wide range of image processing problems including image deblurring can be formulated in this way. We develop proximity algorithms based on the fixed point characterization of the solution to the minimization problems . We further refine the proposed algorithm...
متن کاملInexact alternating direction method based on Newton descent algorithm with application to Poisson image deblurring
The recovery of images from the observations that are degraded by a linear operator and further corrupted by Poisson noise is an important task in modern imaging applications such as astronomical and biomedical ones. Gradient-based regularizers involve the popular total variation semi-norm have become standard techniques for Poisson image restoration due to its edgepreserving ability. Various e...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.4438 شماره
صفحات -
تاریخ انتشار 2014